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ABSTRACT 

For homomorph i sms  be tween groups, one can divide out  the  kernel  to get  

an injection. Here, we develop a not ion of kernels for maps  be tween clas- 

sifying spaces of compac t  Lie groups. We show t h a t  the  kernel is a normal  

subgroup  in a modified sense and prove a general iza t ion of a theorem of 

Quillen, namely, a map f :  BG--~BH~ is injective,  iff the  induced map  in 

mod-p cohomology is finite. Moreover, for compac t  connected Lie groups,  

every map  f :  BG ---+ BH~ factors over a quot ient  of G in a modified sense 

and this  factor isa t ion is an injection. 

1. I n t r o d u c t i o n  

For a homomorphism p: G , H between groups, we know that the kernel ker(p) 

of p is a normal subgroup of G, which gives rise to an exact sequence 

ker(p) , G , G / k e r ( p ) .  

The induced homomorphism 

G/ker(p) H 

is an injection. In this paper we will develop a analoguos concept for maps 

between classifying spaces. 

To investigate the topological situation we pass to the p-adic completion. We 

also allow a more general target. Let G be a compact connected Lie group. A 

space X is called BG-loca l  if the evaluation induces an equivalence map(BG,  X) 

_ X between the mapping space and X. The space X is called a l m o s t  B G -  

local  if the evaluation induces an equivalence map(BG, X)¢onst ~- X between 
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the component of the constant map const: BG ~X and X. This is equivalent 

to the condition that the loop space fiX is BG-local. 

The situation, we are interested in, is the following 

f: BG ~ X~ is a map, where G is a compact Lie group, where 

(S) X~ is p~omplete and almost BZ/p-local and where 

H*(X;Fv) is of finite type. 

When talking about the kernel of a map f: BG >X~ as in (S), one has to 

look for elements g 6 G of order a power of p, such that flsla) is homotopic to 

the constant map. Here, (g) denotes the subgroup generated by g. This leads to 

a definition of the prekernel, due to Ishiguro [7, 8], and of the kernel, which we 

explain now. 

For every compact Lie group G there exists a maximal p-toral subgroup SpG, 
unique up to conjugation, and every p-torN subgroup is subconjugated to SvG 
[9]. The group SpG is called the p-toral Sylow group of G. If G is finite, SpG 
is the usual p-Sylow group. 

For a compact Lie group G, we denote by Ta the maximal torus, by NTa the 

normalizer of Ta, and by WG the Weyl group. Then, SpG is the counterimage of 

SpWG in NTG. We also denote SpG by NpTa to indicate that SvG is the p-toral 

Sylow subgroup of NTa, too. TG is the component of the unit of NpTa = SpG. 
We define a subgroup Sp~ G C SpG by the commutative diagram 

l 1 l 
Ta , S,G , ~ro(SpG), 

where Tp~ C Ta denotes the subgroup generated by all elements of order a power 

of p. For a map f: BG >X~, we define the prekernel of f as 

preker(f) := {g 6 Sp~G: f[s<g> -~ const}, 

and the kernel of f as 

ker(f) := cl(preker(y)), 

where cl( ) denotes the closure in SpG or G. 
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1.1 THEOREM: Let f:  BG --~ X~ be a map as in (S). 

(1) preker(f) is a subgroup of SpooG. 

(2) ker(f) is a p-toral subgroup of SpG. 

(3) flaker(f) i8 nullhomotopic. 

As the proof in the next section shows, the theorem is true without the 

assumptions that H*(X~; Fv) is of finite type. 

These results lead to the following definitions: A map f :  BG , X~ as in 

(S) is called in jec t ive  if ker(f) is the trivial group, and, following [4] or [13], 

monic  or f ini te  if H*(BG;Fp) is finitely generated over H*(X~;F, ) .  In [13] it 

is proved that  the kernel of a homomorphism p: G ,H between two compact 

Lie groups is finite and of order coprime to p if and only if the induced map 

Bp: BG ,BH~ is monic. The following statement also generalizes a result of 

Dwyer and Wilkerson [4, Proposition 4.4] 

1.2 THEOREM: Let f :  BG----*X~ be a map as in (S). Then, f is injective, if and 

only if f is monic. 

Let O(G) be the orbit category of G, and let Ov(G ) be the full subcategory, 

whose objects are homogenous spaces G/P, where P is a p-toral subgroup of 

SpG. Usually, Op(G) is defined to be the full subcategory of the spaces G/P, 

where P is any p-toral subgroups of G. Our definition is more convenient for 

our purpose and gives a homotopy equivalent category. This follows because, up 

to conjugation, every p-total subgroup is contained in SpG [9]. For a subgroup 

K C SpG and a p-toral subgroup P C SpG, we define Kp := K n P. 

1.3 LEMMA: For a p-toral subgroup F C SpG the following conditions are equiv- 

alent: 

(1) For every x E F of order a power of p and for every g E G, we have 

gxg -1 E SpG ff and only if gxg -1 E F. 

(2) For every pair P, P' C SpG of p-total subgroups and for every g E G, such 

that gpg-1 C P', we have gFpg -1 c Fp,. 

Proof'. Sp~ F C F is a dense subset and contains only elements of order a power 

of p. If F satisfies the first condition and if gpg-1 C pt, then g(Sp~.F O p)g-1 C 

Spoof f3 P' .  Because P '  is closed, this is also true for F, which is condition (2). 

Every element of order a power ofp  generates a finite p-group. Hence, (2) implies 

(1) obviously. I 
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A p-toral subgroup F C SpG is called Ov(G)-normal, if F satisfies one of the 

conditions of Lemma 1.3. 

1.4 PROPOSITION: Let f: BG ,Xp A be a map as in (S). Then, ker(f) C SpG is 

Ov(G)-normal. 

Proof'. In [7] it is shown that  for two subgroups F, F ~ C SpG, which are conju- 

gated in G, the restriction f lBr  is nullhomotopic if and only if f[Br, is nullho- 

motopic. Hence, for every x E ker(f),  conjugated elements are also contained in 

ker(f).  

For a map f :  BG ~ X~ as in (S), the kernel ker(f) C SpG is not a normal 

subgroup of G in general. But, for G connected, ker(f) is the right invariant, 

which tells us on which part the map f :  BG--~X~ is trivial. To avoid discussions 

and arguments about homotopy colimits, we study Op(G)-normal subgroups of 

NpTc. This investigation allows one to prove the following theorem: 

1.5 THEOREM: Let G be a compact connected Lie group and let f: BG ~X~ 

be a map as in (S). Then, there exists a compact Lie group H and a commutative 

diagram 
BG I , X~ 

such that f :  RHA'~-4YA --'-v ._p is injective. 

Using a weak form of Theorem 1.1 (1), Ishiguro proved a similiar result for 

simple Lie groups. [7, 8]. We remark that we have to take the completion of 

BH. Moreover, as the proof shows, the group H in the theorem is not connected 

in general. This statement says that, at least, we can divide out by the kernel 

to make the map injective. Moreover, the homotopy fiber of BG~ q BH~ is 

closely related to ker(f). One might think of this homotopy fiber as being the 

kernel of f and of q as a surjection. In general, the homotopy fiber of q might 

not be the completion of the classifying space of a compact Lie group. 

The paper is organized as follows: In the next section we prove Theorem 1.1, 

the third section contains a proof of Theorem 1.2, and in the last section Op(G)- 

normal subgroups are discussed to prove Theorem 1.5. 

Completion is always meant in the sense of [2]. 
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It is pleasure to thank K. Ishiguro for several discussions on this subject. 

2. P r e k e r n e l s  a n d  kerne l s  

We start with the following observation: 

2.1 LEMMA: Let X~  be a p-complete almost BZ/p-local space. Then, Xp A is 

almost BG-1ocal for every compact Lie group G. 

Proof: A p-complete space X~' is always BZ/p'-local for any prime p' ¢ p. If X~ 

is also BZ/p-local,  then, by [11, §9], it follows that X~ is B;r-local for any locally 

finite group yr. For every compact Lie group G, there exists a mod-p equivalence 

Bvr---~BG, where 7r is locally finite [6]. So, Xp is BG-local. Because for a p- 

complete space X~, the loop space ~ (X~)  is also p-complete, the same arguments 

apply to show that every p-complete almost BZ/p-local space is almost BG-local 

for every compact Lie group G. | 

Let 7r be a finite group. For x E 7r, we define u(x) to be the smallest subgroup 

of 7r, which is normal in 7r and contains x. This is welldefined because the 

intersection of two normal subgroups is also normal. 

2.2 LEMMA: I1¢7r is a finite p-group and noncyclic, then, for every x E 7r , u( x ) C 7r 

is a proper subgroup and u(x) = (yxy- l :  y E 7r). 

For a set S of elements of ~r, we denote by (S) the subgroup generated by the 

elements of S. 

Proof: The center of ~r is nontrivial and contains Z/p  as subgroup. Hence, 

there exists a central extension Z/p  ---, 7r q--% ~ := ~r/Z/p. If ~ ~ Z/p  k is cyclic, 

all central group extensions are given by abelian groups. Thus , as a noncyclic 

group, 7r - Zip  • ZIp k and obviously satisfies the statement. 

If ~ is noncyclic, we can use an induction over the order of ~r. Let ~ := q(x). 

Then, q(u(x)) C u(5) ~ ~ by induction hypothesis. This shows that u(x) ~ 7r. 

To prove the second part of the statement, we observe that  the group u~(x) := 

(yxy- l :  y E 7r), generated by all the conjugates of x, is normal in 7r. Hence, 

u(x) C u'(x). On the other hand, yxy -1 E u(x) for all y E It, which shows that 

c . 

To prove Theorem 1.1 we need the following result, which may be found iv 

[12], or [7]. 
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2.3 LEMMA: Let K ---* G q H be an exact sequence of groups, and let X be an 

almost B K-local space. Then, 

q*: map(BH,  X )  , UftB~_¢o, , tmap(BG, X ) f  

is an equivalence. 

2.4 PROPOSITION: Let f :  B r  , Xp A be a map, where ~r is a finite p-group 

and X A a p-complete and almost BZ/p-local space. Let {Xl, . . .  ,z~} be a set ot 

generators. I[ f[B(x~) ~-- eonst for a11 i, then f is homotopically trivial. 

Proo£" We pove the statement by an induction over the order of r .  If Ir ~ Z / p  k 

is cyclic, there is nothing to show because one of the elements must generate 7r. 

If 7r is noncyclic, by Lemma 2.1, there exists an exact sequence 

> - - - +  : =  • 

u(xl )  is generated by elements of the form yx ly  -1, and flB(u~ly-~) -~ coast. 

The order of U(Xl) is smaller than the order of ~r. By induction hypothesis, 

f[B~(~) -~ const. By Lemma 2.1, X~ is BU(Xl)-local, and Lemma 2.3 establishes 

an equivalence map(B~, X~) -~ ^ [.JglB~(~l)~const map(B~, X~ )g. In particular, f 

factors over a map f :  B~---~X~.  

The quotient ~ is generated by the elements ~i :-- q(xi). The exact sequence 

and another application of Lemma 2.3 show that fiB(5,) -~ coast. Thus we can 

again apply the induction hypothesis, which shows that  f - const. This finishes 

the proof. | 

Now, we are prepared to prove Theorem 1.1. 

Proof of Theorem 1.1: Let x, y E preker(f). We want to show that  xy E 

preker(f) or, more generally, that f[B(~,y) -~ const. 

Sp~oG is a locally finite p group. In particuliar, there exists a sequence 

r~ c r2 c . . .  c r~ c . . . S p ~ G  

of finite p groups such that  Sp~ G = [J~ [5]. Therefore, (x, y) is a finite p-group, 

and, by the last proposition, flB(x,y) ~- const. This proves (1). 
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Let F~ : -  Fr npreker(f) .  Then, preker(f) = (-Jr Fir. By Proposition 2.3, f]sr, 
is nullhomotopic. Because X~ is almost BZ/p-local and hence almost BF~-local 

(Lemma 2.1), li__m 1~zl (map(Br', X~)co.st -~ li_m lr l(Z#) vanishes. The Milnor 

sequence for calculating the homotopy groups of inverse homotopy limits proves 

that  flBpreker(I) is nullhomotopic. 

Lemma 2.5 below shows that Bpreker(f)----+Bker(f) is a mod-p equivalence. 

For the p-complete space X~, the map [B(ker(f), Xp A] ~ [B(preker(f), X~] 

between homotopy classes of maps is a bijection [2]. This implies that  flBker(f) 

is nullhomotopic and proves part (3). 

ker(f) is the closure of preker(f) in SpG. Thus, the group of the components 

of ker(f) is a finite p-group, and ker(f) is a p-toral group which is part (2). This 

finishes the proof. | 

2.5 LEMMA: Let f: BG ~Xp A be a map as in (S). Then, the map 

B(preker(f)) , B(ker(f)) 

is a mod-p equivalence. 

Proo~ Let T(f) denote the component of the unit of ker(f),  T~(f) the inter- 

section of T(f) and Sp~G, and let r :-- lr0(ker(f). These groups fit into the 

commutative diagram 

Both rows are exact. 

T~(f) ) preker(f) , ~r 

1 l 
T(I )  , ker(f) , ~r. 

As a locally finite abelian p-group, T~(f) ~ (Z/p°°) r × A, where A is a fi- 

nite abelian p-group. Because the closure of T~(f) is T(f), A is trivial, and 

T(f) ~- ($1) r. So, BToo(f)--*BT(f) is a mod-p equivalence. The Serre spectra] 

sequence for mod-p cohomology for the fibrations in the diagram 

BToo(f) , Bpreker(f) , BTr 

1 1 F1 
BT(I) , B k e r ( l )  , B,~ 

proves the statement. | 
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3. I n j e c t i v e  a n d  m o n i c  m a p s  

In this section we proof Theorem 1.2. Let f:  BG ,X~ be a map as in (S). 

Let Ap(G) denote the QuiUen category. The objects are given by elementary 

abelian p-subgroups and the morphisms by conjugation in G [13]. To get a finite 

category, we take only one object for every isomorphism class of objects, i.e. for 

every conjugacy class of a group. The Quillen map 

¢: H*(BG;G ) ~ li,_m H*(BV;Fp) 
VeAp(G) 

is H*(BG; Fp)-linear and an F-isomorphism; i.e. kernel and cokernel are nilpo- 

tent [13, Theorem 7.2]. Let 

B:=im(¢o f* )c  li,__m H*(BV;Fp) c H H*(BV;Fp) 
V6Ap(G) VEAp(G) 

be the image of * ^ H (X~ ; Fp). 

Proo[ of Theorem 1.2: First, we assume that f is injective and show that f 

is monic. For any elementary abelian p-subgroup V C G, the restriction flRv 
is also injective. By [4, Proposition 4.4], which is the analogous statement oI 

Theorem 1.2 for elementary abelian p-groups, this implies that H*(BV;Fp) is 
• A a finitely generated module over H (X~ ;Fp) and over B. Because Ap(G) is 

a finite category, r i v e ^ A t ) H * ( B V ; F p )  is a finitely generated module over B 

and a finitely generated algebra over Fp. Therefore, B is also a finitely gen- 

erated algebra over Fp [1, Proposition 7.8] and hence noetherian. This implies 

that lim H*(BV; Fp), as a submodule of ~yeA~(a)  H*(BV; Fp), is a finitely 
v~Ap(G) 

• ^ generated module over B and over H (X~ ;Fp). 

If f is not monic, i.e the finitely generated Fp-algebra H*(BG; Fp) is not a 

finitely generated module over H*(X~;Fp),  there exists an element 

y 6 H*(BG; Fp) such that {yi: i 6 N} is a set of linearly independent ele- 

ments over H*(X; Fp). By the above considerations, for r 6 N big enough, there 

exists a relation ¢(yr) r--1 x i * ^ = ~ = 0  '¢(Y)  w i t h x i  6 H (X~;Fp).  That is that  
y r  v ' ~ r  - 1 i - 2..,~=o xiy is in the kernel of ¢ and hence nilpotent. Thus, for s 6 N big 

enough, 
r - - 1  r - - 1  

~=0 j=O 
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for suitable x~ e H*(X~; Fv). This is a contradiction and proves that  f is monic. 

Now, we assume that f is monic. Let Z/p  C G be a subgroup of G. Up to 

conjugation, Zip  is contained in SpG. By [13], H* (BZ/p; Fp) is finitley generated 

over H*(BG;Fv), and therefore, also over H*(X~;Fv). That is that  the map 

f ^ is homotopically nontrivial. This implies that ker(f) = {1} BZ/p  -~ BG --* X v 

and that  f is injective. | 

4. Op(G)-normal subgroups 

For every compact connected Lie group G, there exists a finite covering 

K , G  ~ , G ,  

where G - G8 x T is a product of a simply connected Lie group G8 and a torus 

T. G8 - I-[ Gi is a product of simply connected simple Lie groups. K is a 

finite central subgroup of G. The group G is unique up to isomorphisms. Such 

coverings we call universal finite. 

4.1 LEMMA: Let K --~ G -% G be an exact sequence o[ compact Lie groups, K 

finite and G and G connected. Let f: BG ---* X~ be a map as in (S). 

(1) The sequence 

SpK --* preker(f o Ba) ~ preker(f) 

is exact. 

(2) ker(f  o Ba) --+ ker(f) is an epimorphism, and ker(f o Be)  = Spa -1 ker(f).  

Proo~ Obviously, a - l (preker( f ) )  N Sp~G is contained in preker(f o Ba).  In 

particuliar, SpK C preker(f o Ba). Let F :-- preker(f o B a ) / S p K  D preker(f). 

Then, by Lemma 2.3, 

map(BF, X~) -~ LJ map(Bpreker(f  o Ba),  ^ 
g l B s~ K _~const 

This implies that  f i S t  is homotopicaUy trivial, and hence, that  F C preker(/),  

which establishes the desired sequence of (1). 

To prove the second statement we first observe that  in this case epimorphism 

are maintained under taking closures. The second part in (2) follows from the 

facts that,  as a p-toral group, ker( foBa) C Spc~ -1 ker(f),  and that  f[ssp~-i ker(/) 

is homotopically trivial. | 
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4.2 LEMMA: Let K --~ G -% G be an exact sequence of compact Lie groups, K 

finite and (] and G connected. Let P C SpG be a p-toral subgroup. Then, P is 

Op(a)-normal if and only if Spa-l(P) C SpG is Op(G)-normal. 

Proof." Let 0 := a - l ( P )  and P := SpO: The composition ~b --+ ~) -~ p 

is an epimorphism. This follows, because P and Q have identical components 

of the unit, and because, passing to the components, the composition ~r0(P) = 

Sprco(Q) --* Zoo(P) is an epimorphism of finite groups. 

K C G is a central subgroup. The multiplication #: (K A ~)) x P --+ 0 fits into 

the pull back diagram 

l 1 ° 
~ ' , p .  

Thus, p is an epimorphism, and ~5 C ~) is a normal subgroup. That is that  P is 

the only p-toral Sylow subgroup of ~). 

Every element x E P of order a power ofp has a lift & E ~5, also of order a power 

of p. Let ~ • G and g := (~(~). Then, ~ - 1  • SpG if and only, if gxg -1 • SpG, 

and, because ~5 C ~) is the only p-toral Sylow subgroup, ~ - 1  • 15 if and only 

if gxg -1 • P. This proves the statement. | 

Lemma 4.1 and Lemma 4.2 reduce the calculat ion of kernels and Op (G)- normal 

subgroups, G connected, to the case of products of simply connected Lie groups 

and tori. Let G ~- G, x T be such a product. In order to describe Op(G)-normal 

subgroups, we associate for every prime p a subgroup H(G,p) to each simply 

connected simple Lie group G. We define 

NTG if (p, IWGI) = 1, 

H(G,p) := SU(2) )~ Z/2  if G = G2 and p = 3, 

G else. 

We define H(Gs,p) := ~H(Gi ,p)  for a product Gs = 1-IGi of simply connected 

simple Lie groups. Then, BH(Gs,p)'---~BG is a mod-p equivalence. If p = 3 and 

G = G2, this follows from the isomorphism 

H*(BG2; Z/p) ~ H*(BSU(2); Z/p) z/2' 

and if (p, I Wa. D = 1 from the isomorphism H* (BG,;Z/p) -~ H* (BTa. ;Z/p) Wa°, 
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4.3 PROPOSITION: Let G = 1-I G~ x T be a product of simply connected simple 

Lie groups Gi and a torus T. Let F C NpT~ be a Op(G)-normal subgroup. Then, 

we can split G ~ = G' x G" such that F -~ NpTG, x P and F C To,, x T. Moreover, 

is normal in H(G' ,p)  x T and the image o f f  in G" is finite. 

We postpone the proof. This result enables us to prove Theorem 1.5. 

Proof of Theorem 1.5: Let f :  BG ~ X~ be a map as in (S), and let 

K , G - - - ~ G  

be a universal finite covering, where G ~ G~ x T. By the last proposition and 

Proposition 1.3, G~ - G' x G "  and ke r ( foBa)  ~ NpTc, xF.  Now, we define H = 

(H(G", p) x T)/F. The classical kernel of the projection G' x H(G',  p) x T ~ H 

is given by G ~ x F, which contains K by construction. We get a commutative 

diagram 
B(G' x H(G",p) x T) Bi) BG fobs, X~ 

B(G' x g ( V ' , p )  x T ) / K  sT) BG f , XpA 

BH; -- Bgp A -], X;. 

Bi and B~ are mod-p equivalences. BHp is p-complete, because 7rl(BH) 

is a finite group [2]. This establishes the map q: BG----~BH~. The quotient 

(G' × F) /K is a normal subgroup of (G' x H(G",p) x T) /K ,  and X~ is al- 

most B(G' x F)/K-local  (Lemma 2.1). Therefore, the map f o B~ factors over 
f: A A ,-,., -- BH# ----*Xp (Lemma 2.3). Moreover, 7 o q _ f ,  because f o ~ _~ f o B~. This 

proves the first half of Theorem 1.5. 

By Lemma 4.1 , ker(f  o Ba o Bi) ~oa) ker(]) is an epimorphism. This shows 

that  ] is injective. | 

In the rest of this section, we prove Proposition 4.3. 

Proof of Proposition 4.3: The subgroup FT = F N T~ is invariant under the 

Weyl group action. In particuliar, W5 acts on the component re of the unit of 

F, and H2(BFe; Q) is a W~-submodule of 

H2(BTb; Q) ~ ~ H~(BG,; Q) @ H2(BT; Q) • 
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The first summands are irreducible. Thus, FT f3 TG, = TG~ or the intersection is 

trivial. 

Let G' be the product of all factors Gi with Ta~ c F, and G" the product of 

the other factors of G. Let x 6 NpTG, but x ¢_ TG,. Then x is conjugated to an 

element in TG, and therefore, x 6 F. This implies that  NvTG, C F. Moreover, 

NpTG, is a normal subgroup of F. 

N, Tc, i> 

gpTa, J> gvTa, × 

both rows are central extensions. 

In the commutative diagram 

r , := rlNpTG, 

1 l 
NpTa,, x r > Npra,, x T 

The map j has a section, which establishes 

also a section for i. Therefore, the upper sequence is the trivial extension, F 

NpTG, x F, and F C NpTG,, x T. This is the first part of the statement. 

Because F~ C NvTG, x T, the image of I" in G" is a finite group and Op(G")- 

normal. We have to investigate finite Op(G)-normal subgroups of simply con- 

nected simple Lie groups. The following proposition finishes the proof. | 

4.4 PROPOSITION: Let G be a simply connected simple Lie group, and F C NpTG 

a Op(G)-normal finite p-subgroup. 

(1) I f  p divides [WG[, and if G # G2 or p # 3, then F is central in G. 

(2) If  G = G2 and p = 3, then r is central in SU(3) and hence normal in 

H(G2,3) .  

(3) If(p,  [WG[) = 1, then F is normal in g(G,p) .  

Proo~ I f x  6 F then t x t - l x  -1 6 F for a l l t  6 TG. Because F is finite, all 

the commutators are trivial. Thus, x centralizes TG. Because CG(TG) = TG, 

F =FTCTG. 
If (p,[WG[) = 1, F is normal in NTv  -- H(G,p). I f p  divides [Wv[, we have 

to prove that  F is central in G or, for G = G2 and p = 3, central in SU(3). Let 

x 6 F \ Z(G) and x p~ = 1. Using this element, we construct an element F \ TG, 

which gives a contradiction. This is done by a case by case checking and very 

much in the flavour of the proof of [7, Theorem 2']. 

Before we start, we make two observations. First, if (1) is true for two groups 

G and H,  then it is obviously true for the product G x H and, Second, if G q 

is a covering of connected Lie groups, then (1) is true for G if and only if G 

satisfies condition (1). To see this, we consider a finite Op(G)-normal p-subgroup 
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F C NpTc. Then, F' := (F, SpZ(G)) is also a finite Op(G)-normal p-subgroup. 

Because F' = Sp(q-l(q(r'))), the group af t ' )  is Op(G)-normal if and only if F' 

is Op(G)-normal (Lemma 4.2), and q('~') C G is central if and only if F' C G is 

central. 

Let G = SU(n), n > p. Up to conjugation, x can be represented by a 

diagonal matrix D = D(al, . . . ,an) ,  where al is a pk-th root of unity, and 

al ~ a2. The element y = D(a2 ,a l ,aa , . . . ,a , )  is conjugate to x and thus, 

xy -1 = D(ala21,a-~la2, 1 , . . . ,  1) E F. Because ala~ 1 ¢ 1, conjugates of xy -1 

generate a subgroup of TG, which contains the maximal elementary abelian p- 

subgroup VG of TG. Every element of order p is conjugate to an element in Va. 

This gives a contradiction. For G = U(n), n >_ p, the same proof works. 

Let G = Sp(n), n > p. Then, U(n) and SU(2) n are subgroups of maximal rank. 

Therefore, F C Tsp(~) is central in V(n) and SU(2) n. But 

Z(U(n)) N Z(SU(2) n) = Z/2  = Z(Sp(n)). 

By the above observation, the case of G = Spin(n), n >_ 2p and n _> 5, can 

be reduced to the case of SO(n). Let n = 2k or n = 2 k + l .  Then, U(k) C 

SO(2k) C SO(2k + 1) is a subgroup of maximal rank, and F is central in U(k). 

For n > 5, the only Wso(2k) or Wso(2k+l)-invariant subgroup of S 1 = Z(U(k))  

is Z/2.  For SO(2k), Z/2 C U(k) C SO(2k) is central, and for SO(2k + 1), 

Z/2  C U(k) C SO(2k + l) is conjugate to a subgroup in NTso(2k+I) \ Tso(2k+D, 

which proves the statement for SO(n). 

Let G be an exceptional Lie group and p a divisor of ]Wa[. In this case, we 

choose subgroups of maximal rank, given by the following list: 

G 2 : p = 2 , 3  H = S U ( 3 )  

F 4 : p = 2  H = S U ( 3 ) × z / 3 S U ( 3 )  p = 3  Spin(9) 

Es : p = 2, 5 H = SU(3)3/Z/3 p = 3 H = SU(2) xz/2 SU(6) 

ET: p = 3 ,5 ,7  H = SU(8) /Z/2  p = 2 H = SU(3) ×Z/3 SU(6) 

E 8 : p = 3 , 5 , 7  H = S U ( 2 )  xz /2E7  p = 2  H = S U ( 9 ) / Z / 3 .  

Beside the case G = G2 and p = 3, the inclusion H C G always induces an 

isomorphism SpZ(H) ~- SpZ(G) between the p-Sylow subgroups of the centers. 

The data may be obtained from [9], where one can find a complete list of maxima] 

subgroups of maximal rank of the exeptional Lie groups, and from [14]. 

Now, we can argue as follows: Let F C NpTG be an Op(G)-normal subgroup. 

Then, by induction over the rank, by the above observations, and by the already 
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calculated cases, F is central in H and hence, central in G. 

For G = G2 and p = 3, the argument only shows that F is central in SU(3). 

That  is F = Z/3  or F is the trivial group. In both cases, F is normal in 

SU(3) >~ Z/2  = H(G2, 3). This finishes the last open case and the proof of 

the proposition. | 

References 

[1] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, 

Addison-Wesley, Massachusetts, 1969. 

[2] A. Bousfield and D. Kan, Homotopy limits, completion, and localisations, Lecture 

Notes in Math. 304, Springer-Verlag, Berlin, 1972. 

[3] W. G. Dwyer and C. W. Wilkerson, Mapping spaces o[ nullhomotopic maps, 

Astdrisque 191 (1990), 97-108. 

[4] W. G. Dwyer and C. W. Wilkerson, A cohomological decomposition theorem, 

preprint. 

[5] M. Feshbach, The Segal conjecture for compact Lie groups, Topology 26 (1987), 

1-20. 

[6] E. Friedlander and G. Mislin, Locally finite approximations of compact Lie groups, 

I, Inv. Math. 83 (1986), 425-436. 

[7] K. Ishiguro, Classifying spaces of compact simple Lie groups and p-tori, Proc. of 

1990 Barcelona Conf., Lecture Notes in Math. 1509, Springer-Verlag, Berlin, 1991, 

pp. 210-226. 

[8] K. Ishiguro, Retracts of classifying spaces of compact connected Lie groups, 

preprint. 

[9] S. Jackowski, J. McClure and R. Oliver, Homotopy classification of self maps of 

BG via G actions, Parts I and II, Ann. Math. 135 (1992), 183-226, 227-270. 

[10] J. Lannes, Sur les espaces fonctionelles dont la source est la classifiant d'un p- 

groupe abdlien dlemdmentaires, Publ. Math. IHES 75 (1992), 135-244. 

[11] H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. Math. 

120 (1984), 39-87. 

[12] D. Notbohm, Maps between classifying spaces and applications, Math. Gott. Heft 

20 (1991). 

[13] D. Quillen, The spectrum of an equivariant cohomology r ing/ ,  Ann. Math. 94 

(1971), 549-572. 

[14] J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture 

Notes in Math. 40, Springer-Verlag, Berlin, 1967. 


